

S. Hallitan:

- Introduction
 - About fire modeling
 - Objectives
 - Fire Modeling Guidelines
 - Scope and development
- Steps to perform fire modeling
 - 5 steps to perform fire modeling
 - Supplemental guide
- Conclusions

8/19/2002

Slide: 3

EPRI

TARREST TRUE MELLET STATE

- Fire modeling:
 - an approach for predicting various aspects of fire generated conditions inside a compartment
 - requires an idealization and/or simplification of the physical processes involved in fire events
- Any departure of the fire system from this idealization can seriously affect the accuracy and validity of the approach

8/19/2002

Slide: 4

File Welechiste in Material Bennis Plante

- NPP's present a number of fire modeling challenges
 - The ability to address all this challenges is usually restricted by model capabilities
 - A procedural approach can help practicing engineers through the process of fire modeling
- In response to the need for this procedural approach,
 EPRI developed the Fire Modeling Guidelines

8/19/2002

Slide: 6

Windship a term of the through the

Develop a process through which fire protection engineers in commercial nuclear facilities may use fire modeling to support day-to-day operation of their facilities.

8/19/2002

Slide: 7

They die as that world's

- The guide is a complement and not a substitute to:
 - fire dynamics text books
 - code validation studies
 - user's guide(s) for a particular code(s)
- The guide does not address the issue of selection of fire scenarios.
- Users with the following characteristics will benefit the most:
 - Understanding of algebraic equations
 - General knowledge on compartment fire behavior
 - General knowledge on basic engineering principles, specifically heat transfer and fluid mechanics

8/19/2002

Slide: 8

DENVETO EN TO THE COURSE

- Library of fire scenarios
- Modeling of fire scenarios
 - Scenario description
 - Prediction of fire conditions
- Lessons learned
 - The evaluation of the scenarios generated the knowledge base to develop the actual guidelines
- Methodology to perform fire modeling

8/19/2002

Slide: 9

State diam of Males Mes Seaucidade

- US NPP design and operation
 - Typical geometries and equipment layouts
- Risk significance
 - Fire IPEEE
- Industry experience
 - Utility and NRC surveys: How and where fire modeling has been used in the past.

8/19/2002

Slide: 10

- Switchgear room
- Cable spreading room
- Main control room
- Pump room
- Turbine building
- Multi-compartment corridor
- Multi-level compartments
- Containment

8/19/2002

Slide: 11

Comment Spirestelling Sterein

- Issues and challenges
 - Fire spread in cable trays; horizontal, vertical, or sloped
 - Fire propagation between cable trays; stack, parallel, or crossing
 - Congested ceiling (with cable trays) and impact on ceiling jet
 - Obstructed detection and suppression

*S*XIE

8/19/2002

Slide: 13

• Issues and challenges - Fire propagation inside Main Control Board - Panel-to-panel fire propagation and timing - Habitability 8/19/2002 Slide: 14

William Extending

- Issues and challenges
 - Smoke/hot gas spread upward
 - Fire propagation to floors below
 - Size and location of opening and use of single- or multicompartment model

8/19/2002

Slide: 17

California de la Califo

- The guide does not include a modeling example for the containment building
- Modeling issues in the containment building are addressed in other scenarios:
 - Large enclosure
 - Cylindrical boundaries
 - Domed ceiling

8/19/2002

Slide: 19

EPRI

Mistelshire and h

Hand Calcs

- FIVE-Rev1
 - Excel tool
 - Most of hand calcs in FIVE
 - DETACT
 - MQH room temperature model
- Negligible calculation time

Zone Models

- CFAST (NIST)
- MAGIC (EDF)
- COMPBRN-IIIe
- Calculation times in the order of minutes

Field Models

- Not included in the guide
- Calculation times in the order of hours to days

8/19/2002

Slide: 20

F147 F14 C

- Microsoft Excel tool with hand calculations included as Excel built-in functions.
- The library of functions include most of the hand calculations in FIVE plus the DETACT and the MQH models for detection and room temperature respectively
- The built in functions combined with Excel capabilities allow to perform sensitivity and uncertainty analysis.
- Available from EPRI

8/19/2002

Slide: 21

E 4 C

- Developed in the 90's for a broad range of applications including buildings, power plants etc.
- DOS based software with a GUI interface
- Multi-fire, multi-room, multi target fire simulation
- Available from NIST

SAIC

8/19/2002

Slide: 22

11111111

- Developed in the 90's by EDF for a broad range of applications including buildings, power plants etc.
- Windows based, user friendly graphical interface
- Multi-fire, multi-room, multi-target fire simulation
- Available from EPRI

8/19/2002

Slide: 23

· Jagga hattal dan salat:

- Developed in the early 80's mainly for nuclear applications
- Still a DOS computer application
 - Difficult to input modeling parameters (vs. Windows applications)
 - Difficult to evaluate modeling results (vs. Windows applications)
- Single compartment model with one opening
- Uncertainty Analysis
- Available from EPRI

8/19/2002

Slide: 24

Challete : Steps le Bartenna Mas Vieretallete

• Step 1: Define modeling objectives

Step 2: Describe the fire scenario

• Step 3: Select appropriate model(s) <

• Step 4: Estimate fire generated conditions

• Step 5: Verify and interpret results

8/19/2002

Slide: 25

Micalling Carlos Step 1

- Define modeling objectives
 - Need to be expressed in terms of output parameters from fire models
- Example
 - "Evaluate the temperature at the surface of the target"

8/19/2002

Slide: 26

Miles Michiganis de Caracterias Antala

- Describe the fire scenario
 - Compartment: geometry, ventilation, fire protection
 - Targets: location, flammability parameters, intervening combustibles
 - Fire: heat release rate
- Scenario characteristics are the basis for model selection
- The model may require more or less information than the one already collected.

8/19/2002

Slide: 27

The second control was the Declar

- Select appropriate model(s)
 - The guide provides a table that summarizes the capabilities of each zone model
 - The characteristics of the scenario are required to use the table
 - Additional description may be required based on the specific inputs to the selected model(s)

8/19/2002

Slide: 28

EPRI

Tile Mortaliste Civileta Sicie at

- Estimate fire generated conditions
 - Prepare input file to the model
 - Run the model
 - Process output file

SAIC

8/19/2002

Slide: 29

Premierialing Contols Stap 5

- Verify and interpret results
 - Check if results are consistent with input parameters
 - Use the results to address the predefined objective

SAIC.

8/19/2002

Slide: 30

230101012101210121 2322222111012

- In many fire scenarios, these 5 steps can not be readily implemented for reasons that include:
 - Enclosure geometry
 - Modeling capabilities
 - Input parameters
- Supplemental guidance in these areas help analyst perform fire modeling studies without compromising technical validity.
- Supplemental guidance is also provided in the area of interpreting fire modeling results

8/19/2002

Slide: 31

Discoulations of Patricks (Englished

- Library of NPP fire scenarios
- Modeling examples of the library of fire scenarios
- Fire modeling guide
- Excel template: Five-Rev1

8/19/2002

Slide: 32

Greletel attended

- Understanding of fire dynamics is essential:
 - Physical phenomena
 - Assumptions in the development of each model
 - Capabilities and limitations of each model
- Combination of modeling tools is usually necessary to evaluate complex situations in nuclear power plants
- The fire modeling guidelines help engineers to organize information and select appropriate models
- EPRI is preparing a two-day training course on compartment fire behavior and the use of the FM guide

8/19/2002

Slide: 33

Condinate (e) of s

- Areas where fire modeling can be applied
 - Thermal effects of plumes, ceiling jets and radiation
 - General room heat up, and hot gas layer
 - Elevated fires and oxygen depletion
 - Multiple fires
 - Multi-compartments: corridors and multiple elevations
 - Generation, migration and density of smoke
 - Partial barriers and shields
 - Detection

8/19/2002

Slide: 34

and the state of t

- Areas for future research
 - High energy fires: explosions
 - Hydrogen or liquid spray fires
 - Fire growth within main control board
 - Fire propagation between control panels
 - Fire suppression
 - Cable fires
- EPRI method uses empirical models based on a combination of operating experience and applicable fire tests to estimate consequences of such fires

8/19/2002

Slide: 35

• Duke Power

- Exelon
- Public Service Electric & Gas
- Pacific Gas & Electric
- EDF
- NIST
- NRC

8/19/2002

Slide: 36